
Program Verification

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

PALLAB DASGUPTA,
FNAE, FASc,
A K Singh Distinguished Professor in AI,
Dept of Computer Science & Engineering
Indian Institute of Technology Kharagpur
Email: pallab@cse.iitkgp.ac.in
Web: http://cse.iitkgp.ac.in/~pallab

CS60030 FORMAL SYSTEMS

Software Verification

Is a software program free from bugs?
■ What kind of bugs?

● Lint checking – Divide by zero, Variable values going out of range
● User specified bugs – Assertions

Challenges:
■ Real valued variables

● Huge state space if we have to consider all values
■ Size of the program is much smaller than the number of paths to be explored

● Branchings, Loops

We need to extract an abstract state machine from a program

2

Abstraction: Sound versus Complete

■ Sound Abstraction

If the abstraction shows no bugs, then the original program also doesn’t have bugs

■ Complete Abstraction

If the abstraction shows a bug, then the original program has a bug

Due to undecidability of static analysis problems, we cant have a general procedure that is both sound and
complete.

3

Techniques
Abstract Static Analysis

■ Abstract interpretation

■ Numerical abstract domains

Software Model Checking

■ Explicit and symbolic model checking

■ Predicate abstraction and abstraction refinement

4

Example

5

Sample program:
 int i=0
 do {

assert(i <= 10);
i = i+2;

 } while (i < 5);

L1

L2

L3

L4

L5

Error
i=0;

[i>10]
[i≤10]

i=i+2;
[i<5]

[i≥5]

Control Flow Graph (CFG):

6

Concrete Interpretation Sample program:
 int i=0
 do {

assert(i <= 10);
i = i+2;

 } while (i < 5);

Philosophy:
Collect the set of possible values of i until
a fixed point is reached

L1

L2

L3

L4

L5

Error
i=0;

[i>10]
[i≤10]

i=i+2;
[i<5]

[i≥5]

Int

{0}

{0}

{2}

Φ

Iteration-1

L1

L2

L3

L4

L5

Error
i=0;

[i>10]
[i≤10]

i=i+2;
[i<5]

[i≥5]

Int

{0,2}

{0,2}

{2,4}

Φ

Iteration-2

L1

L2

L3

L4

L5

Error
i=0;

[i>10]
[i≤10]

i=i+2;
[i<5]

[i≥5]

Int

{0,2,4}

{0,2,4}

{2,4,6}

{6}

Iteration-3

7

Abstract Interpretation Sample program:
 int i=0
 do {

assert(i <= 10);
i = i+2;

 } while (i < 5);

Philosophy:
Use an abstract domain instead of value sets
Example: We may use value intervals instead of value sets

L1

L2

L3

L4

L5

Error
i=0;

[i>10]
[i≤10]

i=i+2;
[i<5]

[i≥5]

[min, max]

[0,0]

[0,0]

[2,2]

[]

Iteration-1

L1

L2

L3

L4

L5

Error
i=0;

[i>10]
[i≤10]

i=i+2;
[i<5]

[i≥5]

[min, max]

[0,2]

[0,2]

[2,4]

[]

Iteration-2
L1

L2

L3

L4

L5

Error
i=0;

[i>10]
[i≤10]

i=i+2;
[i<5]

[i≥5]

[min, max]

[0,4]

[0,4]

[2,6]

[5,6]

Iteration-3

Actually, the value 5 is not possible here

8

Numerical Abstract Domains

The class of invariants that can be computed, and hence the properties that can be proved, varies with the
expressive power of a domain

■ An abstract domain can be more precise than another
■ The information loss between different domains may be incomparable

Examples:
■ The domain of Signs has three values: {Pos, Neg, Zero}
■ Intervals are more expressive than signs. Signs can be modeled as [min,0], [0,0], and [0,max]
■ The domain of Parities abstracts values as Even and Odd
■ Signs or Intervals cannot be compared with Parities.

9

Predicate Abstraction

• A sound approximation R’ of the transition relation R is constructed using predicates over program variables

• A predicate P partitions the states of a program into two classes: one in which P evaluates to true and one in
which it evaluates to false

• Each class is an abstract state

• Let A and B be abstract states. A transition is defined from A to B if there is a state in A with a transition to a
state in B

• This construction yields an existential abstraction of a program, which is sound for reachability properties

• The abstract program corresponding to R’ is represented by a Boolean program, one with only Boolean data
types, and the same control flow constructs as C programs

10

Predicate Abstraction Sample program:
 int i=0
 do {

assert(i <= 10);
i++;

 } while (i < 5);

L1

L2

L3

L4

L5

Error
i=0;

[i>10]

[i≤10]

i++;
[i<5]

[i≥5]

CFG of program

L1

L2

L3

L4

L5

Error
 b1:= T;

[¬b1]

[T]

 b1:= b1?F:*;
[T]

Abstraction-1

Abstraction-1 uses the predicate (i=0)
(represented by the variable b1)

[¬b1]

In Abstraction-1 the Error location is
reachable, but the counter-example
cant be reconstructed in the real
program

11

Predicate Abstraction Sample program:
 int i=0
 do {

assert(i <= 10);
i++;

 } while (i < 5);

L1

L2

L3

L4

L5

Error
 b1, b2 := T, T;

[¬b2]

[T]

 b1 := b1?F:(b2? *:F) ;
 b2 := b2?(b1? T:*):F ;

[b2]

Abstraction-2

Abstraction-2 refines Abstraction-1 using the
additional predicate (i<5) (represented by the variable b2)

[¬b2]

In Abstraction-2 the location L2 is
reached with b2 every time. Hence the
Error location is unreachable.

L1

L2

L3

L4

L5

Error
 b1:= T;

[¬b1]

[T]

 b1:= b1?F:*;
[T]

Abstraction-1

[¬b1]

Model Checking with Predicate Abstraction

1
2

• A heavy-weight formal analysis technique

• Recent successes in software verification, e.g., SLAM at Microsoft

• The abstraction reduces the size of the model by removing irrelevant details

• The abstract model is then small enough for an analysis with a BDD-based Model Checker

• Idea: only track predicates on data, and remove data variables from model

• Mostly works with control-flow dominated properties

Source of these slides: D. Kroening: SSFT12 – Predicate Abstraction: A Tutorial

Outline

1
3

• Introduction Existential Abstraction

• Predicate Abstraction for Software

• Counterexample Guided Abstraction Refinement

• Computing Existential Abstractions of Programs

• Checking the Abstract Model

• Simulating the Counterexample Refining the Abstraction

Predicate Abstraction as Abstract Domain

1
4

• We are given a set of predicates over S, denoted by Π1, . . . , Πn.

• An abstract state is a valuation of the predicates:

Sˆ = Bn

• The abstraction function:

α(s) = (Π1(s), . . . , Πn(s))

Predicate Abstraction: the Basic Idea

Concrete states over variables x, y:

x = 1
y = 0

x = 1
y = 1

x = 1
y = 2

x = 2
y = 0

x = 2
y = 1

x = 0
y = 0

Predicates:
p1 ⇐⇒ x > y
p2 ⇐⇒ y = 0

Predicate Abstraction: The Basic Idea

Concrete states over variables x, y:

x = 1
y = 2

x = 2
y = 0

p1, p2

Predicates:
p1

p2

⇐⇒ x > y
⇐⇒ y = 0

6

x = 2 x = 0
y = 1 y = 0

 p1, ¬ p2
¬ p1, p2

¬ p1, ¬
p2

x = 1
y = 0

x=1
y=1

Abstract Transitions?

Existential Abstraction1

Definition (Existential Abstraction)

A model Mˆ = (Sˆ, Sˆ
0, Tˆ) is an existential abstraction of

M = (S, S0, T) with respect to α : S → Sˆ iff• ∃ s ∈ S0. α(s) = sˆ ⇒ sˆ ∈ Sˆ
0 and

• ∃ (s, st) ∈ T. α(s) = sˆ ∧ α(st) = sˆt ⇒ (sˆ, sˆt) ∈ Tˆ.
 

1Clarke, Grumberg, Long: Model Checking and Abstraction, ACM TOPLAS,
1994

7

Minimal Existential Abstractions

There are obviously many choices for an existential abstraction for a
given α.

Definition (Minimal Existential Abstraction)

A model Mˆ = (Sˆ, Sˆ
0, Tˆ) is the minimal existential abstraction of

M = (S, S0, T) with respect to α : S → Sˆ iff

8

• ∃ s ∈ S0. α(s) = sˆ ⇔sˆ ∈ Sˆ
0 and

• ∃ (s, st) ∈ T. α(s) = sˆ ∧ α(st) = sˆt ⇔ (sˆ, sˆt) ∈ Tˆ.
 
 

This is the most precise existential abstraction.

Existential Abstraction

9

We write α(π) for the abstraction of a path π = s0, s1, . . .:

α(π) = α(s0), α(s1), . . .

Existential Abstraction

We write α(π) for the abstraction of a path π = s0, s1, . . .:

α(π) = α(s0), α(s1), . . .

Lemma

Let Mˆ be an existential abstraction of M . The abstraction of

every path (trace) π in M is a path (trace) in Mˆ .

π ∈ M ⇒ α(π) ∈ Mˆ

Proof by induction.

We say that Mˆ overapproximates M .

9

Abstracting Properties

10

Reminder: we are using
• a set of atomic propositions (predicates) A, and
• a state-labelling function L : S → P(A)

in order to define the meaning of propositions in our properties.

Abstracting Properties

11

We define an abstract version of it as follows:

• First of all, the negations are pushed into the atomic propositions.

E.g., we will have
x = 0 ∈ A and x ≠ 0 ∈ A

Abstracting Properties

12

• An abstract state sˆ is labelled with a ∈ A iff all of the corresponding concrete states are
labelled with a.

a ∈ Lˆ(sˆ) ⇔ ∀ s | α(s) = sˆ. a ∈ L(s)

• This also means that an abstract state may have neither the label x = 0 nor the label x ≠ 0 –
this may happen if it concretizes to concrete states with different labels!

Conservative Abstraction

The keystone is that existential abstraction is conservative for certain properties:

Theorem (Clarke/Grumberg/Long 1994)

Let φ be a ∀CTL* formula where all negations are pushed into the

atomic propositions, and let Mˆ be an existential abstraction of M . If φ

holds on Mˆ , then it also holds on M .

13

Mˆ
|= φ ⇒ M |= φ

We say that an existential abstraction is conservative for ∀CTL* properties. The same result can
be obtained for LTL properties.

The proof uses the lemma and is by induction on the structure of φ. The converse usually does
not hold.

Back to the Example

x = 2
y = 0

p1, p2

x = 2 x = 0
y = 1 y = 0

p1, ¬p2¬p1, p2

x = 1 x = 1
y = 1 y = 2
¬p1, ¬p2

15

x = 1
y = 0

Let’s try a Property

x = 2
y = 0

p1, p2

x = 1
y = 0

x = 2 x = 0
y = 1 y = 0

p1, ¬p2¬p1, p2

x = 1 x = 1
y = 1 y = 2¬p1, ¬p2

Property:
x > y ∨ y ≠ 0 ⇐⇒ p1 ∨ ¬ p2

Let’s try a Property

✔ ✔ 
x = 2 y = 1

p1, p2
x = 1
y = 0 x = 1

y = 1

p1, ¬p2 ¬p1, p2

¬p1, ¬p2

✔ 

16

Property:
x > y ∨ y ≠ 0 ⇐⇒ p1 ∨ ¬ p2

x = 0
y = 0

x = 1
y = 2

x = 2
y = 0

Another Property

x = 2
y = 0

p1, p2
x = 1
y = 0

Property:
x > y ⇐⇒ p1

¬p1, ¬p2

x = 2
y = 0

x = 0
y = 0

p1, ¬p2 ¬p1, p2
 x = 1
y = 1

x = 1
y = 2

Another Property

x = 2
y = 0

p1, p2
x = 1
y = 0

Property:
x > y ⇐⇒ p1

¬p1, ¬p2

x = 2
y = 0

x = 0
y = 0

p1, ¬p2 ¬p1, p2
 x = 1
y = 1

x = 1
y = 2

✔ ✔ 

Another Property

✔ ✔ 
x = 2
y = 0
p1, p2

x = 1
y = 0

17

x = 1
y = 1

p1, ¬p2 ¬p1, p2

¬p1, ¬p2

✘ 

Property:
x > y ⇐⇒ p1

x = 2
y = 0

x = 0
y = 0

x = 1
y = 2

Another Property

✔ ✔ 
x = 2
y = 0
p1, p2

x = 1
y = 0

17

x = 1
y = 1

p1, ¬p2 ¬p1, p2

¬p1, ¬p2

✘ 

Property:
x > y ⇐⇒ p1

x = 2
y = 0

x = 0
y = 0

x = 1
y = 2

But: the counterexample is spurious

SLAM

18

• Microsoft blames most Windows crashes on third party device drivers

• The Windows device driver API is quite complicated

• Drivers are low level C code

• SLAM: Tool to automatically check device drivers for certain errors

• SLAM is shipped with Device Driver Development Kit

• Full detail available at
http://research.microsoft.com/slam/

http://research.microsoft.com/slam/

SLIC

19

• Finite state language for defining properties

o Monitors behavior of C code
o Temporal safety properties (security automata)

o familiar C syntax

• Suitable for expressing control-dominated properties
o e.g., proper sequence of events
o can track data values

SLIC Example

unlocked locked
acq

rel

s t a t e { 
enum { Locked , Unlocked }  

s = Unlocked ;
}

 

KeAcquireSpinLock . e n t r y { 
i f (s==Locked) abort ;

e l s e s = Locked ;
}

KeReleaseSpinLock . e n t r y {
 i f (s==Unlocked) abort ;
 e l s e s = Unlocked ;
} 
 

 

 

SLIC Example

unlocked locked
acq

rel

error
rel

20

acq

s t a t e { 
enum { Locked , Unlocked }  

s = Unlocked ;
}

 

KeAcquireSpinLock . e n t r y { 
i f (s==Locked) abort ;

e l s e s = Locked ;
}

KeReleaseSpinLock . e n t r y {
 i f (s==Unlocked) abort ;
 e l s e s = Unlocked ;
} 
 
 

 

 

 

Refinement Example

21

do { 
KeAcquireSpinLock ();

nPacketsOld = nPackets;

if (request) { 
request = request−>Next;

KeReleaseSpinLock ();

nPackets++;

} 

} while(nPackets != nPacketsOld);

KeReleaseSpinLock ();

Refinement Example

do { 
KeAcquireSpinLock ();

nPacketsOld = nPackets;

if (request) { 
request = request−>Next;

KeReleaseSpinLock ();

nPackets++;

} 

} while(nPackets != nPacketsOld);

KeReleaseSpinLock ();

Does this code obey the
locking rule?

21

Refinement Example

22

do { 

KeAcquireSpinLock ();

if (∗) { 

KeReleaseSpinLock ();

} 

} while(∗);

KeReleaseSpinLock ();

Refinement Example

do { 

KeAcquireSpinLock ();

if (∗) {
 

KeReleaseSpinLock ();
} 
 

} while(∗);

KeReleaseSpinLock ();

 

22

UL

L
L

L

L

U

U

U
U E

Refinement Example

22

do { 

KeAcquireSpinLock ();

if (∗) {
 

KeReleaseSpinLock ();
} 
 

} while(∗);

KeReleaseSpinLock ();

 

L

E

U

L
L

L

L

U

U
U

U

Refinement Example

Is this path
concretizable?

22

L

E

U

L
L

L

L

U

U
U

U

do { 

KeAcquireSpinLock ();

if (∗) {
 

KeReleaseSpinLock ();
} 
 

} while(∗);

KeReleaseSpinLock ();

 

Refinement Example

do { 
KeAcquireSpinLock ();

nPacketsOld = nPackets;

if (request) { 
request = request−>Next;

KeReleaseSpinLock ();

nPackets++;

} 

} while(nPackets != nPacketsOld);

KeReleaseSpinLock ();

23

L

E

U

L
L

L

L

U

U
U

U

Refinement Example

This path is
spurious!

23

L

E

U

L
L

L

L

U

U
U

U

do { 
KeAcquireSpinLock ();

nPacketsOld = nPackets;

if (request) { 
request = request−>Next;

KeReleaseSpinLock ();

nPackets++;

} 

} while(nPackets != nPacketsOld);

KeReleaseSpinLock ();

Refinement Example

Let’s add the predicate
nPacketsOld==nPackets

23

L

E

U

L
L

L

L

U

U
U

U

do { 
KeAcquireSpinLock ();

nPacketsOld = nPackets;

if (request) { 
request = request−>Next;

KeReleaseSpinLock ();

nPackets++;

} 

} while(nPackets != nPacketsOld);

KeReleaseSpinLock ();

Refinement Example

Let’s add the predicate
nPacketsOld==nPackets

23

L

E

U

L
L

L

L

U

U
U

U

do { 
KeAcquireSpinLock ();

nPacketsOld = nPackets;

if (request) { 
request = request−>Next;

KeReleaseSpinLock (); nPackets++;

} 

} while(nPackets != nPacketsOld);

KeReleaseSpinLock ();

b=true;

Refinement Example

Let’s add the predicate

nPacketsOld==nPackets

23

L

E

U

L
L

L

L

U

U
U

U

do { 
KeAcquireSpinLock ();

nPacketsOld = nPackets;

if (request) { 
request = request−>Next;

KeReleaseSpinLock ();

nPackets++;

} 

} while(nPackets != nPacketsOld);

KeReleaseSpinLock ();

b=true;

b=b?false:∗;

!b

Refinement Example
do { 

KeAcquireSpinLock ();

if (∗) { 
 KeReleaseSpinLock ();

} 

} while());

KeReleaseSpinLock ();

b=true;

b=b?false:∗;

!b

24

UL

L
L

L

L

U

U

U
U E

Refinement Example

24

UL

L
L

L

L

U

U

U
U E

b

do { 

KeAcquireSpinLock ();

if (∗) { 
 KeReleaseSpinLock ();

} 

} while());

KeReleaseSpinLock ();

b=true;

b=b?false:∗;

!b

Refinement Example

24

UL

L
L

L

L

U

U

U
U E

b

b

b
b

do { 

KeAcquireSpinLock ();

if (∗) { 
 KeReleaseSpinLock ();

} 

} while());

KeReleaseSpinLock ();

b=true;

b=b?false:∗;

!b

Refinement Example

24

UL

L
L

L

L

U

U

U
U E

b

b

b
b

b
b

!b

do { 

KeAcquireSpinLock ();

if (∗) { 
 KeReleaseSpinLock ();

} 

} while());

KeReleaseSpinLock ();

b=true;

b=b?false:∗;

!b

Refinement Example

24

UL

L
L

L

L

U

U

U
U E

b

b

b
b

b
b

!b

do { 

KeAcquireSpinLock ();

if (∗) { 
 KeReleaseSpinLock ();

} 

} while());

KeReleaseSpinLock ();

b=true;

b=b?false:∗;

!b

Refinement Example

24

UL

L
L

L

L

U

U

U
U E

b

b

b
b

b
b

!b

The property holds!

do { 

KeAcquireSpinLock ();

if (∗) { 
 KeReleaseSpinLock ();

} 

} while());

KeReleaseSpinLock ();

b=true;

b=b?false:∗;

!b

Counterexample-guided Abstraction Refinement

“CEGAR”

An iterative method to compute a sufficiently precise abstraction

Initially applied in the context of hardware [Kurshan]

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 53

CEGAR Overview

1. Compute Abstraction 2. Check Abstraction

3. Check Feasibility4. Refine Predicates

[no error]
OK

[feasible]

C program

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 54

Counterexample-guided Abstraction Refinement

Claims:

1. This never returns a false error.
2. This never returns a false proof.
3. This is complete for finite-state models.
4. But: no termination guarantee in case of infinite-state systems

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 55

CEGAR Overview

1. Compute Abstraction 2. Check Abstraction

3. Check Feasibility4. Refine Predicates

[no error]
OK

[feasible]

C program

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 56

Computing Existential Abstractions of Programs

int main () {  
int i ;

i = 0 ;

while (even (i))
 i+ + ;

} 

+ p1 ⇔ i=0
p2 ⇔ even(i)

Predicates

void main () {
 bool p1 , p2 ;

 p1=TRUE ;
 p2=TRUE ;

 while (p2) {  
 p1 = p1 ? FALSE : * ;
 p2= !p2 ;
 }  
}

Boolean ProgramC Program
Minimal?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 57

Predicate Images

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 58

Enumeration

▪ Let’s take existential abstraction seriously

▪ Basic idea: with n predicates, there are 2n · 2n possible abstract transitions

▪ Let’s just check them!

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 59

Enumeration: Example
Predicates

p1
⇐⇒ 

i = 1

p2 ⇐⇒  i = 2

p3 ⇐⇒  even(i)

Basic Block

i ++;

T

i'= i + 1

p1 p2 p3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

p'1 p'2 p'3? Query to Solver

i ≠ 1 ∧ i ≠ 2 ∧ even(i) ∧
i' = i + 1∧ 

i' ≠ 1 ∧ i' ≠ 2 ∧ even(i')
 

✘ 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 60

Enumeration: Example
Predicates

p1
⇐⇒ 

i = 1

p2 ⇐⇒  i = 2

p3 ⇐⇒  even(i)

Basic Block

i ++;

T

i'= i + 1

p1 p2 p3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

p'1 p'2 p'3 Query to Solver

i ≠ 1 ∧ i ≠ 2 ∧ even(i) ∧
i' = i + 1∧ 

i' ≠ 1 ∧ i' ≠ 2 ∧ even(i')
 

?
✔ 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 61

Enumeration: Example
Predicates

p1
⇐⇒ 

i = 1

p2 ⇐⇒  i = 2

p3 ⇐⇒  even(i)

Basic Block

i ++;

T

i'= i + 1

p1 p2 p3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

p'1 p'2 p'3 Query to Solver

. . . and so on . . .

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 62

Predicate Images

Computing the minimal existential abstraction can be way too slow

• Use an over-approximation instead
 ✔ Fast(er) to compute
⌧ But has additional transitions

• Examples:
• Cartesian approximation (SLAM)
• FastAbs (SLAM)

• Lazy abstraction (Blast)

• Predicate partitioning (VCEGAR)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 63

CEGAR Overview

1. Compute Abstraction 2. Check Abstraction

3. Check Feasibility4. Refine Predicates

[no error]
OK

[feasible]

C program

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 64

Finite-State Model Checkers: SMV

①
Variables

VAR b0_argc_ge_1 : boolean ; −− argc >= 1
VAR b1 _argc_le_2147483646 : boolean ; −− argc <= 2147483646
VAR b2 : boolean ; −− argv[argc] == NULL
VAR b3_nmemb_ge_r : boolean ;
VAR b4 : boolean ;
VAR b5_i_g e_8 : boolean ;
VAR b6_i_g e_s : boolean ;
VAR b7 : boolean ;
VAR b8 : boolean ;
VAR b9_s_g t_0 : boolean ;
VAR b10_s_g t_1 : boolean ;
. . .

−− nmemb >= r
−− p1 == &array[0]
−− i >= 8
−− i >= s
−− 1 + i >= 8
−− 1 + i >= s
−− s > 0
−− s > 1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 65

Finite-State Model Checkers: SMV

②
Control

Flow-- program counter : 56 is the "terminating” PC
VAR PC : 0 . . 56 ;
ASSIGN init (PC) := 0 ; -- i n i t i a l PC

ASSIGN next (PC) : = case
PC = 0 : 1 ; -- other
PC = 1 : 2 ; -- other
…

PC=19: case -- goto (with guard)
guard19 : 26 ;
1 : 20 ;

esac ;
. . .

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 66

Finite-State Model Checkers: SMV
③  Data

TRANS (PC=0) −> next (b 0 _a r g c_g e_1) = b 0_a r g c_g e_1
& next (b 1_a r g c_l e_2 1 3 6 4 6) = b1_a r g c_l e_2 1 6 4 6
& next (b2) = b2
& (! b30
& (! b17
& (! b30
& (! b17
& (! b54

| b36)
| ! b30
| ! b42
| ! b30
| b60)

| b42)
| b48)
| ! b42 | b54)

TRANS (PC=1) −> next (b 0_a r g c_g e_1) = b 0_a r g c_g e_1
& next (b 1_a r g c_l e_2 1 4 6 4 6) = b 1_a r g c_l e_2 1 4 7 4 6
& next (b2) = b2
& next (b3_nmemb_ge_r) = b3_nmemb_ge_ r
& next (b4) = b4
& next (b 5_i_g e_8) = b 5_i_g e_8
& next (b 6_i_g e_s) = b 6_i_g e_s
. . .INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 67

Finite-State Model Checkers: SMV

④
Property

−− the specification

−− file main.c line 20 column 12
−− function c :: very buggy function
SPEC AG ((PC=51) −> ! b23)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 68

Finite-State Model Checkers: SMV

▪ If the property holds, we can terminate

▪ If the property fails, SMV generates a counterexample with an assignment for all variables,
including the PC

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 69

CEGAR Overview

1. Compute Abstraction 2. Check Abstraction

3. Check Feasibility4. Refine Predicates

[no error]
OK

[feasible]

C program

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 70

Lazy Abstraction

▪ The progress guarantee is only valid if the minimal existential abstraction is used.

▪ Thus, distinguish spurious transitions from spurious prefixes.

▪ Refine spurious transitions separately to obtain minimal existential abstraction

▪ SLAM: Constrain

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 71

Lazy Abstraction

▪ One more observation:
Each iteration only causes only minor changes in the abstract model

▪ Thus, use “incremental Model Checker”, which retains the set of reachable states between iterations
(BLAST)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 72

Example Simulation

int main() { 
int x, y;

y=1;

x=1;

if (y>x)
y−−;

else
y++;

assert(y>x);

} 

Predicate:
y>x

main() { 

bool b0; // y>x
b0=*;
b0=*;

if (b0)

b0=*;
else

b0=*;

assert(b0);

} 
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 73

Example Simulation

int main() { 
int x, y;

y=1;

x=1;

if (y>x)
y−−;

else
y++;

assert(y>x);

} 

main() { 

bool b0; // y>x
b0=*;
b0=*;
if (b0)

b0=*;

else

b0=*;

 assert(b0);
} 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 74

Predicate:
y>x

Example Simulation

int main() { 
int x, y;

y=1;

x=1;

if (y>x)
y−−;

else
y++;

assert(y>x);

} 

We now do a path test, so convert to
Static Single Assignment (SSA).

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 75

Example Simulation

int main() { 
int x, y;

y1=1;

x1=1;

if (y1>x1)

y2=y1−1;

else
y++;

assert(y2>x1);

} 

y1 = 1 ∧

x1 = 1 ∧

y1 > x1 ∧

y2 = y1 − 1 ∧

¬(y2 > x1)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 76

CEGAR Overview

1. Compute Abstraction 2. Check Abstraction

3. Check Feasibility4. Refine Predicates

[no error]
OK

[feasible]

C program

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 77

Manual Proof!
int main() {

int x, y;
y=1;

x=1;

if (y>x)
y−−;

else

y++;

assert(y>x);
}

{y = 1} 

{x = 1 ∧ y =
1} 

{x = 1 ∧ y = 1 ∧ ¬y >
x} 

{x = 1 ∧ y = 2 ∧ y >
x}

This proof uses
strongest

post-conditions

78

An Alternative Proof
int main() {

int x, y;
y=1;

x=1;

if (y>x)
y−−;

else

y++;

assert(y>x);
}

{y > x}

{y + 1 > x}

{¬y > x ⇒ y + 1 > x}

{¬y > 1 ⇒ y + 1 > 1}
We are using weakest pre-conditions here

wp(x:=E, P) = P [x/E]
wp(S;T,Q) = wp(S,wp(T,Q))
wp(if(C) A else B , P) =

(C ⇒ wp(A,P)) ∧
(¬C ⇒ wp(B,P))

The proof for the ”true” branch is missing

79

Refinement Algorithms

Using WP
1. Start with failed guard G
2. Compute wp(G) along the path

Using SP
3. Start at the beginning
4. Compute sp(…) along the path

Both methods eliminate the trace
Advantages / Disadvantages?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 80

Approximating Loop Invariants: SP

57

i n t x , y ;
The SP refinement results in

x=y = 0 ;

while (x != 10) {
x ++;
y ++;

}

a s s e r t (y ==
10) ;

sp(x=y=0, true) = x = 0 ∧ y = 0

sp(x++; y++, . . .) = x = 1 ∧ y =
1sp(x++; y++, . . .) = x = 2 ∧ y =
2sp(x++; y++, . . .) = x = 3 ∧ y =
3…

✓ 10 iterations required to prove the
property.

✓ It won’t work if we replace 10 by n.

Approximating Loop Invariants: WP

58

i n t x , y ;
The WP refinement results in

x=y = 0 ;

while (x != 10) {
x ++;
y ++;

}

a s s e r t (y == 10) ;

✓ Also requires 10 iterations.
✓ It won’t work if we replace 10 by n.

wp(x==10, y ≠ 10)
wp(x++; y++, . . .)
wp(x++; y++, . . .)
wp(x++; y++, . . .)
. . .

= y ≠ 10 ∧ x = 10
= y ≠ 9 ∧ x = 9
= y ≠ 8 ∧ x = 8
= y ≠ 7 ∧ x = 7

What do we really need?

Consider an SSA-unwinding with 3 loop
iterations:

59

x1 = 0
y1 = 0

1st It.

x1 ≠ 10
x2 = x1 +1
y2 = y1 +1

2nd It.

x2 ≠ 10 x3
= x2 +1 y3
= y2 +1

3rd It.

x3 ≠ 10 x4
= x3 +1 y4
= y3 +1

x4 = 10
y4 ≠ 10

Assertion

x1 = 0
y1 = 0

x2 = 1
y2 = 1

x3 = 2
y3 = 2

x4 = 3
y4 = 3

✘This proof will produce the same predicates as
SP.

i n t x , y ;

x=y = 0 ;

while (x != 10) {
x ++;
y ++;

}

a s s e r t (y == 10
) ;

What do we really need?

Suppose we add a restriction = “no new constants”:

59

x1 = 0
y1 = 0

1st It.

x1 ≠ 10
x2 = x1 +1
y2 = y1 +1

2nd It.

x2 ≠ 10 x3
= x2 +1 y3
= y2 +1

3rd It.

x3 ≠ 10 x4
= x3 +1 y4
= y3 +1

x4 = 10
y4 ≠ 10

Assertion

x1 = 0
y1 = 0

x2 = 1
y2 = 1

x3 = 2
y3 = 2

i n t x , y ;

x=y = 0 ;

while (x != 10) {
x ++;
y ++;

}

a s s e r t (y == 10
) ; x3 = y3

(loop invariant)

x4 = y4
(loop invariant)

✔ The language restriction forces the solver to
generalize!

