Program Verification

CS60030 FORMAL SYSTEMS

PALLAB DASGUPTA,

FNAE, FASc, A K Singh Distinguished Professor in AI, Dept of Computer Science & Engineering Indian Institute of Technology Kharagpur

Email: pallab@cse.iitkgp.ac.in

Web: http://cse.iitkgp.ac.in/~pallab

Software Verification

Is a software program free from bugs?

- What kind of bugs?
 - Lint checking Divide by zero, Variable values going out of range
 - User specified bugs Assertions

Challenges:

- Real valued variables
 - Huge state space if we have to consider all values
- Size of the program is much smaller than the number of paths to be explored
 - Branchings, Loops

We need to extract an abstract state machine from a program

Abstraction: Sound versus Complete

■ Sound Abstraction

If the abstraction shows no bugs, then the original program also doesn't have bugs

■ Complete Abstraction

If the abstraction shows a bug, then the original program has a bug

Due to undecidability of static analysis problems, we cant have a general procedure that is both sound and complete.

Techniques

Abstract Static Analysis

- Abstract interpretation
- Numerical abstract domains

Software Model Checking

- **Explicit and symbolic model checking**
- **■** Predicate abstraction and abstraction refinement

Example

Sample program:

```
int i=0
do {
    assert( i <= 10);
    i = i+2;
} while (i < 5);</pre>
```

Control Flow Graph (CFG):

Concrete Interpretation

Philosophy:

Collect the set of possible values of i until a fixed point is reached

```
Sample program:
int i=0
do {
    assert( i <= 10);
    i = i+2;
} while (i < 5);</pre>
```


Abstract Interpretation

Philosophy:

Use an abstract domain instead of value sets

Example: We may use value intervals instead of value sets

Actually, the value 5 is not possible here

Numerical Abstract Domains

The class of invariants that can be computed, and hence the properties that can be proved, varies with the expressive power of a domain

- An abstract domain can be more *precise* than another
- The information loss between different domains may be incomparable

Examples:

- The domain of *Signs* has three values: {Pos, Neg, Zero}
- Intervals are more expressive than signs. Signs can be modeled as [min,0], [0,0], and [0,max]
- The domain of *Parities* abstracts values as Even and Odd
- Signs or Intervals cannot be compared with Parities.

Predicate Abstraction

- A sound approximation R' of the transition relation R is constructed using predicates over program variables
- A predicate P partitions the states of a program into two classes: one in which P evaluates to true and one in which it evaluates to false
 - Each class is an abstract state
 - Let A and B be abstract states. A transition is defined from A to B if there is a state in A with a transition to a state in B
 - This construction yields an existential abstraction of a program, which is sound for reachability properties
 - The abstract program corresponding to R' is represented by a *Boolean program*, one with only Boolean data types, and the same control flow constructs as C programs

Predicate Abstraction

Abstraction-1 uses the predicate (i=0) (represented by the variable b₁)

Sample program:

```
int i=0
do {
    assert( i <= 10);
    i++;
} while (i < 5);</pre>
```

In Abstraction-1 the Error location is reachable, but the counter-example cant be reconstructed in the real program

Predicate Abstraction

Abstraction-2 refines Abstraction-1 using the additional predicate (i<5) (represented by the variable b₂)

Sample program:

```
int i=0
do {
    assert( i <= 10);
    i++;
} while (i < 5);</pre>
```

In Abstraction-2 the location L2 is reached with b₂ every time. Hence the Error location is unreachable.

Model Checking with Predicate Abstraction

- A heavy-weight formal analysis technique
- Recent successes in software verification, e.g., SLAM at Microsoft
- The abstraction reduces the size of the model by removing irrelevant details
- The abstract model is then small enough for an analysis with a BDD-based Model Checker
- Idea: only track predicates on data, and remove data variables from model
- Mostly works with control-flow dominated properties

Source of these slides: D. Kroening: SSFT12 – Predicate Abstraction: A Tutorial

Outline

- Introduction Existential Abstraction
- Predicate Abstraction for Software
- Counterexample Guided Abstraction Refinement
- Computing Existential Abstractions of Programs
- Checking the Abstract Model
- Simulating the Counterexample Refining the Abstraction

Predicate Abstraction as Abstract Domain

• We are given a set of predicates over S, denoted by Π_1, \ldots, Π_n .

An abstract state is a valuation of the predicates:

$$\hat{S} = B^n$$

• The abstraction function:

$$\alpha(s) = (\Pi_1(s), \ldots, \Pi_n(s))$$

Predicate Abstraction: the Basic Idea

Concrete states over variables x, y:

Predicates:

p1
$$\iff$$
 x > y
p2 \iff y = 0

Predicate Abstraction: The Basic Idea

Concrete states over variables x, y:

Predicates:

$$\begin{array}{c} P_1 \iff x > y \\ p_2 \iff y = 0 \end{array}$$

Abstract Transitions?

Existential Abstraction¹

Definition (Existential Abstraction)

A model $M = (S, S_0, T)$ is an existential abstraction of

$$M = (S_s S_w S_0)$$
 with respect to $q : S_0 \to S_0$ iff

•
$$\exists (s, s^t) \in T. \ \alpha(s) = s^{\hat{}} \land \alpha(s^t) = s^{\hat{}t} \Rightarrow (s^{\hat{}}, s^{\hat{}t}) \in T.$$

¹Clarke, Grumberg, Long: *Model Checking and Abstraction*, ACM TOPLAS, 1994

Minimal Existential Abstractions

There are obviously many choices for an existential abstraction for a given α .

Definition (Minimal Existential Abstraction)

A model $M = (S, S_0, T)$ is the *minimal existential abstraction* of

$$M = (3, 5)$$
 with respect to 3° affd

•
$$\exists (s, s^t) \in T. \alpha(s) = s^{\hat{}} \land \alpha(s^t) = s^{\hat{}t} \Leftrightarrow (s^{\hat{}}, s^{\hat{}t}) \in T.$$

This is the most precise existential abstraction.

Existential Abstraction

We write $\alpha(\pi)$ for the abstraction of a path $\pi = s_0, s_1, \ldots$:

$$\alpha(\pi) = \alpha(s_0), \alpha(s_1), \dots$$

Existential Abstraction

We write $\alpha(\pi)$ for the abstraction of a path $\pi = s_0, s_1, \ldots$:

$$\alpha(\pi) = \alpha(s_0), \alpha(s_1), \dots$$

Lemma

Let M be an existential abstraction of M. The abstraction of every path (trace) π in M is a path (trace) in M.

$$\pi \in M \Rightarrow \alpha(\pi) \in M$$

Proof by induction.

Abstracting Properties

Reminder: we are using

- a set of atomic propositions (predicates) A, and
- a state-labelling function $L: S \rightarrow P(A)$

in order to define the meaning of propositions in our properties.

Abstracting Properties

We define an abstract version of it as follows:

• First of all, the negations are pushed into the atomic propositions.

E.g., we will have
$$x = 0 \subseteq A \text{ and } x \neq 0 \subseteq A$$

Abstracting Properties

• An abstract state s is labelled with $a \in A$ iff all of the corresponding concrete states are labelled with a.

$$a \in L(s) \Leftrightarrow \forall s \mid \alpha(s) = s \cdot a \in L(s)$$

• This also means that an abstract state may have neither the label x = 0 nor the label $x \neq 0$ – this may happen if it concretizes to concrete states with different labels!

Conservative Abstraction

The keystone is that existential abstraction is conservative for certain properties:

Theorem (Clarke/Grumberg/Long 1994)

Let φ be a \forall CTL* formula where all negations are pushed into the atomic propositions, and let \hat{M} be an existential abstraction of M. If φ holds on \hat{M} , then it also holds on #M #M $= \varphi$

We say that an existential abstraction is conservative for \forall CTL* properties. The same result can be obtained for LTL properties.

The proof uses the lemma and is by induction on the structure of φ . The converse usually does not hold.

Back to the Example

Let's try a Property

$$x > y \ V \ y \neq 0 \iff p_1 \ V \ \neg p_2$$

Let's try a Property

$$x > y \ V \quad y \neq 0 \iff p_1 \ V \quad \neg p_2$$

$$x > y \iff p_1$$

$$x > y \iff p$$

$$x > y \iff p$$

Property:

$$x > y \iff p_1$$

But: the counterexample is spurious

SLAM

- Microsoft blames most Windows crashes on third party device drivers
- The Windows device driver API is quite complicated
- Drivers are low level C code
- SLAM: Tool to automatically check device drivers for certain errors
- SLAM is shipped with Device Driver Development Kit
- Full detail available at http://research.microsoft.com/slam/

SLIC

- Finite state language for defining properties
 - Monitors behavior of C code
 - Temporal safety properties (security automata)
 - o familiar C syntax

- Suitable for expressing control-dominated properties
 - o e.g., proper sequence of events
 - o can track data values

SLIC Example


```
state {
  enum { Locked, Unlocked}
    s = Unlocked;
KeAcquireSpinLock . e n t r y {
     if (s==Locked) abort;
  else s = Locked;
KeReleaseSpinLock . e n t r y {
  if (s==Unlocked) abort;
  else s = Unlocked;
```

SLIC Example


```
state {
  enum { Locked , Unlocked }
    s = Unlocked;
KeAcquireSpinLock . e n t r y {
     if (s==Locked) abort;
  else s = Locked;
KeReleaseSpinLock . e n t r y {
  if (s==Unlocked) abort;
  else s = Unlocked;
```

Refinement Example

```
do {
    KeAcquireSpinLock ();
    nPacketsOld = nPackets;
     if (request) {
         request = request—>Next;
         KeReleaseSpinLock ();
         nPackets++;
} while(nPackets != nPacketsOld);
KeReleaseSpinLock ();
```

Does this code obey the locking rule?

```
do {
    KeAcquireSpinLock ();
    nPacketsOld = nPackets;
     if (request) {
         request = request—>Next;
         KeReleaseSpinLock ();
         nPackets++;
} while(nPackets != nPacketsOld);
KeReleaseSpinLock ();
```

```
do {
    KeAcquireSpinLock ();
     if (*) {
         KeReleaseSpinLock ();
} while(*);
KeReleaseSpinLock ();
```



```
do {
     KeAcquireSpinLock ();
     if (*) {
       KeReleaseSpinLock ();
} while(*);
KeReleaseSpinLock ();
```



```
do {
     KeAcquireSpinLock ();
     if (*) {
       KeReleaseSpinLock ();
} while(*);
KeReleaseSpinLock ();
```



```
do {
     KeAcquireSpinLock ();
     if (*) {
       KeReleaseSpinLock ();
} while(*);
KeReleaseSpinLock ();
```

Is this path concretizable?


```
do {
    KeAcquireSpinLock ();
    nPacketsOld = nPackets;
     if (request) {
         request = request—>Next;
         KeReleaseSpinLock ();
         nPackets++;
} while(nPackets != nPacketsOld);
KeReleaseSpinLock ();
```



```
do {
    KeAcquireSpinLock ();
    nPacketsOld = nPackets;
     if (request) {
         request = request—>Next;
         KeReleaseSpinLock ();
         nPackets++;
} while(nPackets != nPacketsOld);
KeReleaseSpinLock ();
```

This path is spurious!


```
do {
     KeAcquireSpinLock ();
    nPacketsOld = nPackets;
     if (request) {
         request = request—>Next;
         KeReleaseSpinLock ();
         nPackets++;
} while(nPackets != nPacketsQld);
                                   Let's add the predicate
KeReleaseSpinLock ();
                                  nPacketsOld==nPackets
```



```
do {
     KeAcquireSpinLock ();
     nPacketsOld = nPackets;
                                b=true;
     if (request) {
          request = request->Next;
          KeReleaseSpinLock (); nPackets++;
} while(nPackets != nPacketsOld);
KeReleaseSpinLock ();
```

Let's add the predicate nPacketsOld==nPackets


```
do {
     KeAcquireSpinLock ();
                                          b=true;
     nPacketsOld = nPackets;
     if (request) {
          request = request—>Next;
          KeReleaseSpinLock ();
                                          b=b?false:*;
          nPackets++;
} while(nPackets != nPacketsOld);
                                           !b
KeReleaseSpinLock ();
                                   Let's add the predicate
```

nPacketsOld==nPackets


```
do {
     KeAcquireSpinLock ();
      b=true;
     if (*) {
          KeReleaseSpinLock ();
             b=b?false:*;
} while( !b ));
KeReleaseSpinLock ();
```



```
do {
     KeAcquireSpinLock ();
      b=true;
     if (*) {
          KeReleaseSpinLock ();
             b=b?false:*;
} while( !b ));
KeReleaseSpinLock ();
```



```
do {
     KeAcquireSpinLock ();
      b=true;
     if (*) {
          KeReleaseSpinLock ();
             b=b?false:*;
} while( !b ));
KeReleaseSpinLock ();
```



```
do {
     KeAcquireSpinLock ();
      b=true;
     if (*) {
          KeReleaseSpinLock ();
             b=b?false:*;
} while( !b ));
KeReleaseSpinLock ();
```



```
do {
     KeAcquireSpinLock ();
      b=true;
     if (*) {
          KeReleaseSpinLock ();
             b=b?false:*;
} while( !b ));
KeReleaseSpinLock ();
```



```
do {
     KeAcquireSpinLock ();
      b=true;
     if (*) {
          KeReleaseSpinLock ();
             b=b?false:*;
} while( !b ));
KeReleaseSpinLock ();
```

The property holds!

Counterexample-guided Abstraction Refinement

- ☐ "CEGAR"
- ☐ An iterative method to compute a sufficiently precise abstraction
- ☐ Initially applied in the context of hardware [Kurshan]

CEGAR Overview

Counterexample-guided Abstraction Refinement

Claims:

- 1. This never returns a false error.
- 2. This never returns a false proof.
- 3. This is complete for finite-state models.
- 4. But: no termination guarantee in case of infinite-state systems

CEGAR Overview

Computing Existential Abstractions of Programs

```
void main() {
                                                bool p1, p2;
int main() {
  int i;
                                                p1=TRUE;
                                                p2=TRUE;
  i = 0;
                                                while (p2) {
  while ( even ( i ) )
                                                  p1 = p1 ? FALSE : *;
  j+ + ;
                                                  p2= !p2;
                           Predicates
                                                  Boolean Program
   C Program
```

Minimal?

Predicate Images

Reminder:

$$Image(X) = \{s' \in S \mid \exists s \in X.T(s,s')\}$$

We need:

$$\widehat{Image}(\hat{X}) = \{\hat{s}' \in \hat{S} | \exists \hat{s} \in \hat{X}. \hat{T}(\hat{s}, \hat{s}')\}$$

 $\widehat{Image}(\widehat{X})$ is equivalent to:

$$\left\{\hat{s}, \hat{s}' \in \hat{S}^2 \mid \exists s, s' \in S^2 . \, \alpha(s) = \hat{s} \, \land \, \alpha(s') = \hat{s}' \land \, T(s, s') \right\}$$

This is called the predicate image of T.

Enumeration

- Let's take existential abstraction seriously
- Basic idea: with n predicates, there are $2^n \cdot 2^n$ possible abstract transitions
- Let's just check them!

Enumeration: Example

Predicates

$$\begin{array}{ccc}
\rho_1 & i = 1 \\
& \iff & \\
\rho_2 & \iff i = 2 \\
\rho_3 & \iff & \text{even}(i)
\end{array}$$

Basic Block
$$T$$

$$i ++; \longrightarrow i'=i+1$$

$$\begin{array}{c|ccccc}
 p_1 & p_2 & p_3 \\
 0 & 0 & 0 \\
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 0 \\
 1 & 1 & 0 \\
 1 & 1 & 1
 \end{array}$$

Query to Solver

$$i \neq 1 \land i \neq 2 \land even(i) \land$$

 $i' = i + 1 \land \underline{\hspace{1cm}}$
 $i' \neq 1 \land i' \neq 2 \land even(i')$

Enumeration: Example

Predicates

$$\begin{array}{ccc}
\rho_1 & i = 1 \\
& \iff & \\
\rho_2 & \iff i = 2 \\
\rho_3 & \iff & \text{even}(i)
\end{array}$$

Basic Block
$$T$$

$$i ++; \longrightarrow i'=i+1$$

Query to Solver

$$i \neq 1 \land i \neq 2 \land even(i) \land$$

 $i' = i + 1 \land$
 $i' \neq 1 \land i' \neq 2 \land even(i')$

Enumeration: Example

Predicates

Basic Block
$$T$$

$$i ++; \longrightarrow i'=i+1$$

p_1	$p_2^{}$	p_3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Query to Solver
... and so on ...

Predicate Images

Computing the minimal existential abstraction can be way too slow

- Use an over-approximation instead
 - ✓ Fast(er) to compute
 - **☒** But has additional transitions

- Examples:
 - Cartesian approximation (SLAM)
 - FastAbs (SLAM)
 - Lazy abstraction (Blast)
 - Predicate partitioning (VCEGAR)

CEGAR Overview


```
Variables
VAR bø argc ge 1: boolean; -- argc >= 1
VAR b1 argc le 2147483646 : boolean ; -- argc <= 2147483646
VAR b3_nmemb_ge_r: boolean;
                          -- nmemb >= r
VAR b4: boolean;
                                  -- p1 == &array[0]
VAR b5 i ge 8: boolean;
                                  -- i >= 8
VAR b6 i ge s: boolean;
                                  -- i >= s
VAR b7: boolean;
                                  --1+i>=8
VAR b8: boolean;
                                  --1+i>=s
VAR b9 s g t 0: boolean;
                                  -- s > 0
VAR b10 s g t 1: boolean;
                                  -- s > 1
```

```
Control
-- program counter: 56 is the "terminating" PC
    PC: 0..56;
ASSIGN init (PC) := 0; --initial PC
ASSIGN next (PC) : = case
      PC = 0: 1; -- other
      PC = 1: 2; -- other
  PC=19: case -- goto (with guard)
      guard19:26;
      1:20;
  esac;
```

3 Data

```
TRANS (PC=0) \rightarrow next (b0 argcge 1) = b0 argcge 1
                & next(b1_argc_le_213646) = b1_argc_le_21646
                 & next(b2) = b2
                 & (!b30 | b36) | b42)
                 & (!b17 | !b30 | b48)
                 & (!b30 | !b42 | !b42 | b54)
                 & (!b17 | !b30
                 & (!b54 | b60)
TRANS (PC=1) \rightarrow next (b 0_arg c_g e_1) = b 0_arg c_g e_1
                & next(b1 argcle 214646)=b1 argcle 214746
                & next(b2) = b2
                & next (b3_nmemb_ge_r) = b3_nmemb_ge_r
                & next(b4) = b4
                & next(b5 i ge_8) = b5_i_ge_8
                & next(b6 i ge s) = b6 i ge s
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
```

```
Property specification
```

```
-- file main.c line 20 column 12
-- function c :: very buggy function
SPEC AG ((PC=51) -> ! b23)
```

- If the property holds, we can terminate
- If the property fails, SMV generates a counterexample with an assignment for all variables, including the PC

CEGAR Overview

Lazy Abstraction

- The progress guarantee is only valid if the minimal existential abstraction is used.
- Thus, distinguish spurious transitions from spurious prefixes.
- Refine spurious transitions separately to obtain minimal existential abstraction
- SLAM: Constrain

Lazy Abstraction

- One more observation:
 Each iteration only causes only minor changes in the abstract model
- Thus, use "incremental Model Checker", which retains the set of reachable states between iterations (BLAST)

```
main() {
int main() {
                                                   bool b0; // y>x
   int x, y;
                                                   b0=*;
   y=1;
                                                   b0=*;
   x=1;
                            Predicate:
                                                   if (b0)
   if (y>x)
                                                         b0=*;
                                                   else
   else
                                                         b0=*;
        y++;
   assert(y>x);
                                                   assert(b0);
```

```
int main() {
                                                    main() {
   int x, y;
                                                         bool b0; // y>x
   y=1;
                                                         b0=*;
                                                         b0=*;
   x=1;
                               Predicate:
                                                         if (b0)
   if (y>x)
                                   y>x
                                                         else
   else
                                                       b0=*;
         y++;
                                                         assert(b0);
   assert(y>x);
```


We now do a path test, so convert to Static Single Assignment (SSA).

$$\neg(y_2 > x_1)$$

This is UNSAT, so $\widehat{\pi}$ is spurious.

CEGAR Overview

Manual Proof!

```
int main() {
    int x, y;
    y=1;
    {y = 1}
    x=1;
    {x = 1 \land y = }
   1 (y>x)
        y--;
    else
        \{x = 1 \land y = 1 \land \neg y > 0\}
        x}+;
        \{x = 1 \land y = 2 \land y > \}
    assert(y>x);
```

This proof uses strongest post-conditions

An Alternative Proof

```
int main() {
    int x, y;
    y=1;
    {\neg y > 1 \Rightarrow y + 1 > 1}
    x=1;
    {\neg y > x \Rightarrow y + 1 > x}
    if (y>x)
        y--;
    else
         {y + 1 > x}
        y++;
    \{y > x\}
    assert(y>x);
```

We are using weakest pre-conditions here

$$wp(x:=E, P) = P[x/E]$$

 $wp(S; T, Q) = wp(S, wp(T, Q))$
 $wp(if(C) A else B, P) =$
 $(C \Rightarrow wp(A, P)) \land$
 $(\neg C \Rightarrow wp(B, P))$

The proof for the "true" branch is missing

Refinement Algorithms

Using WP

- 1. Start with failed guard G
- 2. Compute wp(G) along the path

Using SP

- 3. Start at the beginning
- 4. Compute sp(...) along the path
- Both methods eliminate the trace
- Advantages / Disadvantages?

Approximating Loop Invariants: SP

```
int x, y;

x=y=0;

while (x!=10) {
    x++;
    y++;
}

assert(y==
10);
```

The SP refinement results in

```
sp(x=y=0, true) = x = 0 \land y = 0

sp(x++; y++, ...) = x = 1 \land y = 1

sp(x++; y++, ...) = x = 2 \land y = 1

sp(x++; y++, ...) = x = 3 \land y = 1

sp(x++; y++, ...) = x = 3 \land y = 1
```

- ✓ 10 iterations required to prove the property.
- ✓ It won't work if we replace 10 by n.

Approximating Loop Invariants: WP

```
int x, y;

x=y=0;
while (x!=10) {
   x++;
   y++;
}
assert(y==10);
```

The WP refinement results in

```
wp(x==10, y \neq 10) = y \neq 10 \land x = 10

wp(x++; y++, ...) = y \neq 9 \land x = 9

wp(x++; y++, ...) = y \neq 8 \land x = 8

wp(x++; y++, ...) = y \neq 7 \land x = 7

...
```

- ✓ Also requires 10 iterations.
- ✓ It won't work if we replace 10 by n.

What do we really need?

```
int x, y;

x=y=0;

while (x!=10) {
    x++;
    y++;
}
assert(y==10);
```

Consider an SSA-unwinding with 3 loop iterations:

1st It. 2nd It. 3rd It. Assertion
$$x_1 = 0$$
 $x_1 \neq 10$ $x_2 \neq 10$ x_3 $x_3 \neq 10$ x_4 $x_4 = 10$ $x_2 = x_1 + 1$ $y_2 = y_1 + 1$ $y_2 = y_1 + 1$ $x_2 = 1$ $x_3 = 2$ $x_4 = 3$ $x_1 = 0$ $x_2 = 1$ $x_3 = 2$ $x_4 = 3$ $x_1 = 0$ $x_2 = 1$ $x_3 = 2$ $x_4 = 3$ $x_4 = 3$

X This proof will produce the same predicates as SP.

What do we really need?

Suppose we add a restriction = "no new constants":

```
int x, y;

x=y=0;

while (x!=10) {
    x++;
    y++;
}
assert(y==10);
```

1st It. 2nd It. 3rd It. Assertion
$$x_1 = 0$$
 $x_1 \neq 10$ $x_2 \neq 10$ x_3 $x_3 \neq 10$ x_4 $x_4 = 10$ $x_2 = x_1 + 1$ $y_2 = y_1 + 1$ $y_2 = y_1 + 1$ $y_3 = y_2 + 1$ $y_4 \neq 10$ $x_4 = y_4$ $y_1 = 0$ $x_2 = 1$ $x_3 = 2$ $x_4 = y_4$ (loop invariant) $x_3 = y_3$ (loop invariant)

✓ The language restriction forces the solver to generalize!